https://wol.jw.org/en/wol/d/r1/lp-e/1102010346?q=order+fossil&p=par
QUESTION 4
Darwin thought that all life might be traced to a common ancestor. He imagined that the history of life on earth resembled a grand tree. Later, others believed that this “tree of life” started as a single trunk with the first simple cells. New species branched from the trunk and continued to divide into limbs, or families of plants and animals, and then into twigs, all the species within the families of plants and animals alive today. Is that really what happened?
In recent years, scientists have been able to compare the genetic codes of dozens of different single-celled organisms as well as those of plants and animals. They assumed that such comparisons would confirm the branching “tree of life” proposed by Darwin. However, this has not been the case.
What has the research uncovered? In 1999 biologist Malcolm S. Gordon wrote: “Life appears to have had many origins. The base of the universal tree of life appears not to have been a single root.” Is there evidence that all the major branches of life are connected to a single trunk, as Darwin believed? Gordon continues: “The traditional version of the theory of common descent apparently does not apply to kingdoms as presently recognized. It probably does not apply to many, if not all, phyla, and possibly also not to many classes within the phyla.”29*
Recent research continues to contradict Darwin’s theory of common descent. For example, in 2009 an article in New Scientist magazine quoted evolutionary scientist Eric Bapteste as saying: “We have no evidence at all that the tree of life is a reality.”30 The same article quotes evolutionary biologist Michael Rose as saying: “The tree of life is being politely buried, we all know that. What’s less accepted is that our whole fundamental view of biology needs to change.”31*
30. New Scientist, “Uprooting Darwin’s Tree,” by Graham Lawton, January 24, 2009, p. 34.
31. New Scientist, January 24, 2009, pp. 37, 39.
Charles Darwin (1809–1882) was the first to produce an evolutionary tree of life. He was very cautious about the possibility of reconstructing the history of life. In On the Origin of Species (1859) Chapter IV he presented an abstract diagram of a theoretical tree of life for species of an unnamed large genus (see figure).
In Darwin's own words: "Thus the small differences distinguishing varieties of the same species, will steadily tend to increase till they come to equal the greater differences between species of the same genus, or even of distinct genera".[4]
This is a branching pattern with no names given to species, unlike the more linear tree Ernst Haeckel made years later.
In his summary to the section as revised in the 6th edition of 1872, Darwin explains his views on the Tree of Life:
The affinities of all the beings of the same class have sometimes been represented by a great tree. I believe this simile largely speaks the truth. The green and budding twigs may represent existing species; and those produced during former years may represent the long succession of extinct species...
The limbs divided into great branches, and these into lesser and lesser branches, were themselves once, when the tree was young, budding twigs; and this connection of the former and present buds by ramifying branches may well represent the classification of all extinct and living species in groups subordinate to groups.
Of the many twigs which flourished when the tree was a mere bush, only two or three, now grown into great branches, yet survive and bear the other branches; so with the species which lived during long-past geological periods, very few have left living and modified descendants. From the first growth of the tree, many a limb and branch has decayed and dropped off; and these fallen branches of various sizes may represent those whole orders, families, and genera which have now no living representatives, and which are known to us only in a fossil state.
As we here and there see a thin straggling branch springing from a fork low down in a tree, and which by some chance has been favoured and is still alive on its summit, so we occasionally see an animal like the Ornithorhynchus (Platypus) or Lepidosiren (South American lungfish), which in some small degree connects by its affinities two large branches of life, and which has apparently been saved from fatal competition by having inhabited a protected station.
As buds give rise by growth to fresh buds, and these, if vigorous, branch out and overtop on all sides many a feebler branch, so by generation I believe it has been with the great Tree of Life, which fills with its dead and broken branches the crust of the earth, and covers the surface with its ever-branching and beautiful ramifications.—Darwin, 1872.
The tree of life todayEditThe model of a tree is still considered valid for eukaryotic life forms. Research into the earliest branches of the eukaryote tree suggests a tree with either four supergroups,[6][7] or two supergroups.[8] There does not yet appear to be a consensus; in a review article, Roger and Simpson conclude that "with the current pace of change in our understanding of the eukaryote tree of life, we should proceed with caution" (as science always should).[9]
Biologists now recognize that the prokaryotes, the bacteria and archaea have the ability to transfer genetic information between unrelated organisms through horizontal gene transfer(HGT). Recombination, gene loss, duplication, and gene creation are a few of the processes by which genes can be transferred within and between bacterial and archaeal species, causing variation that is not due to vertical transfer.[10][11][12] There is emerging evidence of HGT occurring within the prokaryotes at the single and multicell level and the view is now emerging that the tree of life gives an incomplete picture of life's evolution. It was a useful tool in understanding the basic processes of evolution but cannot explain the full complexity of the situation.[11]